Extensions 1→N→G→Q→1 with N=C9 and Q=C32⋊C6

Direct product G=N×Q with N=C9 and Q=C32⋊C6
dρLabelID
C9×C32⋊C6546C9xC3^2:C6486,98

Semidirect products G=N:Q with N=C9 and Q=C32⋊C6
extensionφ:Q→Aut NdρLabelID
C9⋊(C32⋊C6) = C9⋊He32C2φ: C32⋊C6/C32C6 ⊆ Aut C981C9:(C3^2:C6)486,148
C92(C32⋊C6) = C9⋊He3⋊C2φ: C32⋊C6/C3⋊S3C3 ⊆ Aut C9546C9:2(C3^2:C6)486,107
C93(C32⋊C6) = He33D9φ: C32⋊C6/He3C2 ⊆ Aut C981C9:3(C3^2:C6)486,142

Non-split extensions G=N.Q with N=C9 and Q=C32⋊C6
extensionφ:Q→Aut NdρLabelID
C9.(C32⋊C6) = C3≀C3.S3φ: C32⋊C6/C32C6 ⊆ Aut C9276+C9.(C3^2:C6)486,175
C9.2(C32⋊C6) = C3≀C3.C6φ: C32⋊C6/C3⋊S3C3 ⊆ Aut C9279C9.2(C3^2:C6)486,132
C9.3(C32⋊C6) = C32⋊D27φ: C32⋊C6/He3C2 ⊆ Aut C981C9.3(C3^2:C6)486,17
C9.4(C32⋊C6) = He3.D9φ: C32⋊C6/He3C2 ⊆ Aut C9816+C9.4(C3^2:C6)486,27
C9.5(C32⋊C6) = He3.2D9φ: C32⋊C6/He3C2 ⊆ Aut C9816+C9.5(C3^2:C6)486,29
C9.6(C32⋊C6) = C32⋊C54central extension (φ=1)546C9.6(C3^2:C6)486,16
C9.7(C32⋊C6) = He3.C18central extension (φ=1)813C9.7(C3^2:C6)486,26
C9.8(C32⋊C6) = He3.2C18central extension (φ=1)813C9.8(C3^2:C6)486,28
C9.9(C32⋊C6) = C3≀S33C3central extension (φ=1)273C9.9(C3^2:C6)486,125

׿
×
𝔽